污污网站在线观看,一级毛片40分钟免费看,欧美另类精品,色av色婷婷91人久久久

世聯(lián)博研(北京)科技有限公司 主營:Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測試分析、aresis多點(diǎn)力學(xué)測試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測試分析系統(tǒng)
服務(wù)電話: 010-67529703
主營產(chǎn)品: Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷售技術(shù)服務(wù): 美國Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測試分析、aresis多點(diǎn)力學(xué)測試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測試分析系統(tǒng)
聯(lián)系我們

細(xì)胞力學(xué)測量光鑷

  • 如果您對該產(chǎn)品感興趣的話,可以
  • 產(chǎn)品名稱:細(xì)胞力學(xué)測量光鑷
  • 產(chǎn)品型號:
  • 產(chǎn)品展商:impetuxcomp
  • 產(chǎn)品文檔:無相關(guān)文檔
簡單介紹

世聯(lián)博研公司代理的面校正多光阱細(xì)胞力學(xué)光鑷系統(tǒng)(多光阱細(xì)胞力學(xué)光鑷生物分子力學(xué)光鑷,細(xì)胞微流變學(xué)光鑷)可以在已有顯微鏡上升級配置起來,免校準(zhǔn)、使用簡潔方便、經(jīng)濟(jì)。 在活細(xì)胞中,免校準(zhǔn)力測量 多點(diǎn)中,活性微流變學(xué)測量 細(xì)胞力學(xué)研究的自動化例程 與相差、微分干涉或熒光顯微鏡兼容 組織中力測量(厚0.5mm) 高效捕捉、低細(xì)胞損害 樣品*大激光功率控制

產(chǎn)品描述

世聯(lián)博研公司代理的免校正多光阱細(xì)胞力學(xué)光鑷系統(tǒng)(多光阱細(xì)胞力學(xué)光鑷生物分子力學(xué)光鑷,細(xì)胞微流變學(xué)光鑷)可以在已有顯微鏡上升級配置起來,免校準(zhǔn)、使用簡潔方便、經(jīng)濟(jì)。

impetux,Cygnium? G-422,LUNAM T-40i,DEIMUS T-10i細(xì)胞組織力學(xué)側(cè)量光鑷,細(xì)胞力學(xué)光鑷,多光阱細(xì)胞力學(xué)生物分子力學(xué)光鑷,單細(xì)胞力學(xué)光鑷,單分子力譜光鑷,馬達(dá)蛋白光鑷,微流變學(xué)光鑷

  • 在活細(xì)胞中,免校準(zhǔn)力測量
  • 多點(diǎn)中,活性微流變學(xué)測量
  • 細(xì)胞力學(xué)研究的自動化例程
  • 與相差、微分干涉或熒光顯微鏡兼容
  • 組織中力測量(厚0.5mm
  • 高效捕捉、低細(xì)胞損害
  • 樣品*大激光功率控制
  •  
  • 光鑷平臺由兩個單元組成:
  • 光操控模塊:用于顯微樣品的捕獲和運(yùn)動
  • 力傳感器模塊:用于試驗(yàn)中涉及的生物力的測量

可以在已有的顯微鏡上升級配置起來,簡潔方便經(jīng)濟(jì)

 

應(yīng)用范圍:

 

1. 單分子力譜

單分子力譜光鑷測量分析系統(tǒng)

 

?馬達(dá)蛋白

?DNA

?RNA

?蛋白-蛋白相互作用:配體受體;膜蛋白

2、馬達(dá)蛋白移動、運(yùn)動

3、單細(xì)胞力學(xué)

細(xì)胞移動
細(xì)胞拉伸—膜彈性
細(xì)胞內(nèi)細(xì)胞器的操縱

4、微流變學(xué)

Key Bibliography

Here you will find useful material published related with our technology and products

Papers

  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers”15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Sch?ffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”



產(chǎn)品留言
標(biāo)題
聯(lián)系人
聯(lián)系電話
內(nèi)容
驗(yàn)證碼
點(diǎn)擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發(fā)送信息!
2.如有必要,請您留下您的詳細(xì)聯(lián)系方式!
Copyright@ 2003-2024  世聯(lián)博研(北京)科技有限公司版權(quán)所有      電話:13466675923 傳真: 地址:北京市海淀區(qū)西三旗上奧世紀(jì)中心A座9層906 郵編:100096